
Bitween: Automated Inference of Program Invariants

Explore Bitween: https://bitween.fun/. The web interface provides a dropdown menu for selecting
and editing predefined benchmarks. Although Bitween operates as a black-box tool, it is currently
integrated with C, supporting a subset that excludes arrays, pointers, and structs. We are actively
working to expand this support. When users click the “Analyze Code” button, Bitween replaces
vtrace calls with inferred properties in assert statements. Users can verify correctness through
fuzzing or bounded model checking.

OVERVIEW OF BITWEEN
Bitween combines machine learning with formal methods to automatically infer program properties
and invariants. Through random fuzzing and static analysis, it identifies assertions, deriving loop
invariants and post-conditions for C programs. Users instrument their code by adding functions
prefixed with vtrace at key locations, such as after entering loops, to monitor terms likely to
appear in invariants.
The interface includes an example dropdown for users to select predefined benchmarks. Key

parameters, such as the entry method (the function where fuzzing begins) and the degree of
inferred properties, can be configured to capture more complex relationships.
While the backend offers advanced configuration options, the graphical interface emphasizes

simplicity for demonstration purposes. By default, Bitween infers properties up to degree 2, using
the terms passed to the vtrace function.

For instance, in Figure 1, Bitween aims for learning a loop invariant, by using vtrace1 at line 8
as 𝐹 [𝑋,𝑌, 𝑥,𝑦, 𝑣] = 0, where 𝐹 is an unknown algebraic function. Bitween aims to interpret 𝐹 in
the hypothesis class of polynomials constructed by the terms passed to 𝐹 and bounded up to a
given degree.

Users can validate these inferred properties through fuzzing or bounded model checking using
‘correctness check’ dropdown.

Additionally, users can include assume statements to refine the analysis, focusing on specific
cases of interest.
To infer post-conditions, users can place vtrace calls before function exits or within function

calls, ensuring the invariants are inferred at key points.
For more sophisticated input generation, users can define intervals using the vdistr function to

guide the fuzzing process with uniform distributions:
1 vdistr(X, 0, 1000);
2 vdistr(Y, 0, 1000);

Although Bitween currently supports only a subset of C, ongoing development will extend it to
handle arrays, pointers, and structs, and improve its handling of inequalities.

EXAMPLE PROGRAMS
In the example programs, Bitween starts by using 20 random inputs to find invariants about the
variables. Here’s an overview of two specific examples:
(1) Bresenham’s Line Drawing Algorithm: This algorithm is used to draw lines on a grid,

selecting the best-fitting pixels between two points. In the first version (Figure 1a), the program
is instrumented with vtrace calls to track variables. Bitween processes these traces and infers

Author’s address:

https://bitween.fun/


1 int bresenham(int X, int Y) {
2 vdistr(X, 0, 1000);
3 vdistr(Y, 0, 1000);
4 assume(X >= 0);
5
6 int v = 2 * Y - X, x = 0, y = 0;
7 while (1) {
8 vtrace1(X, Y, x, y, v);
9
10 if (!(x <= X)) break;
11 if (v < 0) {
12 v = v + 2 * Y;
13 } else {
14 v = v + 2 * (Y - X); y++;
15 }
16 x++;
17 }
18
19 vtrace2(X, Y, x, y, v);
20 return v;
21 }

(a) Input program instrumented with vtrace1
and vtrace2.

int bresenham(int X, int Y) {
vdistr(X, 0, 1000);
vdistr(Y, 0, 1000);
assume(X >= 0);

int v = 2 * Y - X, x = 0, y = 0;
while (1) {

assert (2*X*y + X - 2*Y*x - 2*Y + v == 0);

if (!(x <= X)) break;
if (v < 0) {

v = v + 2 * Y;
} else {

v = v + 2 * (Y - X); y++;
}
x++;

}
assert(X - x + 1 == 0);
assert (2*Y*x +2*Y -v -2*x*y -x +2*y +1==0);
return v;

}

(b) Output program with vtrace locations replaced by in-
ferred invariants.

Fig. 1. Input and output for Bresenham’s line drawing algorithm, based on Srivastava et al.’s From Program
Verification to Program Synthesis, POPL ’10.

1 float z3sqrt(float a) {
2 assume(a >= 1);
3
4 float x = a;
5 float q = 0.5 * (x + a / x);
6 float err = 0.0001;
7
8 while(x - q > err or q - x > err){
9 vtrace1(a, x, err , q);
10
11 x = q;
12 q = 0.5 * (x + a / x);
13 }
14
15 return q;
16 }

(a) Instrumented input program for computing square
roots, by Zuse.

float z3sqrt(float a) {
assume(a >= 1);

float x = a;
float q = 0.5 * (x + a / x);
float err = 0.0001;

while(x - q > err or q - x > err){
assert(a - 2*q*x + pow(x, 2) == 0);
assert(err == 0);
x = q;
q = 0.5 * (x + a / x);

}

return q;
}

(b) Output program with vtrace replaced by inferred
invariants.

Fig. 2. Input and output programs for computing square roots, based on Zuse’s implementation https:
//www.cs.upc.edu/~erodri/webpage/polynomial_invariants/z3sqrt.htm.

invariants about the relationships between variables involved in the line drawing process.
The output (Figure 1b) replaces the vtrace calls with assertions that represent the inferred
invariants, ensuring that the program correctly draws lines under different conditions.

https://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/z3sqrt.htm
https://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/z3sqrt.htm


Bitween: Automated Inference of Program Invariants

(2) Square Root Computation by Zuse: This example computes square roots using an iterative
method. Although the calculation is approximate, based on a fixed error (‘err = 0.0001‘), Bitween
mathematically finds the correct relationships between the variables. The program is first
instrumented with vtrace calls to track key variables (Figure 2a). Using 20 random inputs,
Bitween analyzes the program and infers the necessary relationships (invariants) between
these variables during computation. The output (Figure 2b) contains the inferred assertions in
place of the vtrace calls, ensuring the correctness of the square root calculation, despite the
approximate nature of the iterative method.


